Prevention of bacterial adhesion to medical polymers

Docteur Sophie BOBIN-DUBREUX

BIOMATECH S.A.
Zone Industrielle de l’Islon
115, Rue Pasteur
38670 CHASSE SUR RHONE
France
Infection = a public enemy

- 80% of adults are extremely/very worried about bacteria
- 75% consider food contamination by bacteria a serious health risk
- 11 times more articles about bacteria than 10 years ago
- In the past 6 years, 673 different antibacterial products were introduced

Data from US market
Nosocomial infections

2.4 Million nosocomial infections occur each year in the U.S.

30,000 related deaths occur each year in the U.S.

5-10 per 100 hospital admissions suffer nosocomial infection

$5-10 Billion is the estimated annual direct cost of nosocomial infection

$2,300 is the average cost of nosocomial infection per incident

Prevention of infection
Medical device and infection

- Biomaterials = **essential components of health care** systems

- 5 to 20% of CVC catheters are potentially infected \(\Rightarrow\) 0.1 to 1 per 100 catheter-days

- 20% of patients with Foley catheters (> 25 days) will develop urinary infections

Use of medical devices = Infectious complications
Microorganisms involved

Part of the environmental flora

- **Bacteria**
 - Gram positive Cocci (10%)
 - Coagulase Negative Staphylococci (CNS) → catheter (venous, peritoneal dialysis), cardiac valves, cardiac electrodes
 - *Staphylococcus aureus* (SA) → hemodialysis shunt, vascular prostheses
 - CNS and SA → hip and knee prostheses
 - Gram positive Bacilli (sporulating or not)
 - Gram negative Bacilli (50%): *E. coli, Pseudomonas* → early and late urinary tubes infections

- **Moulds and yeasts** (10%)
Bacterial infection of polymers

- **Factors of adhesion**
 - **Bacterial factors**: Capacity of the microorganism to adhere to polymer surfaces
 - **Polymer factors**: type of polymer and surface
 - Adherence index = hydrophobic surface
 - Ex: PVC >>> teflon
 - Interfering factors from the host (blood, proteins…)

- **Type of infection**
 - **Early infections**: inoculation at the time of implantation
 - **Long term infections**:
 - inoculation during surgery
 - haematogenous spread from distant sites
 - without associated bacteriemia
Formation of a biofilm
Mark Wiencek

- Reversible adsorption of bacteria (sec.)
- Irreversible attachment of bacteria (sec.-min.)
- Growth and division of bacteria (hrs.-days)
- Exopolymer production and biofilm formation (hrs.-days)
- Attachment of other organisms to biofilm (days-months)

Development of multicellular behaviour
The Biofilm: slime + bacteria

- Slime is produced by some bacteria: *S. epidermidis*, *S. aureus*, *P. aeruginosa*, Legionella

- Slime = extracellular mucilaginous substance: glyco-conjugate complex soluble in water = glycocalix

- Slime is responsible for
 - **Cohesion** between the germs
 - Creation of **cell layers**
Example of bacterial adhesion

Staphylococcus epidermidis

G. Pulverer et al.

15 min reversible non-specific adhesion in irregular parts

Formation of microcolonies

12h

12-48h multiple layers of cells irreversible adhesion + secondary erosion areas?

96h multiple layers of cells embedded in mucilagenous substance

Single bacteria

Physicochemical forces

polymer

Growth and division

Production of SLIME

Exopolysaccharide matrix

BIOFILM

Bacteria use N and C of the polymer?
P. aeruginosa adsorption to the Teflon strip, one day after inoculation (1)
Three days after inoculation, reveals the beginnings of glycocalyx production (2)
Biofilm development six days after inoculation, with a well developed glycocalyx (3)
Resistance of bacteria in biofilms

Formation of a « bacterial abcess »
- Morphological changes : spore-like
- Reduced bacterial growth (Resistance to antibiotics)
- Genetic changes: under or over expression of some genes related to protein resistance to antibiotics
- Age of the biofilm: resistance increased with age and structuration of the biofilm

Consequences
- Reduced sensitivities to antimicrobial agents
 ➔ No activity of antibiotic on bacteria covered by 100 µm of slime
- Increased resistances to various stresses = protective environment
Removal of the device

Antibiotics
Antimicrobials
Physiological defenses

BIOFILM

bacteria
slime
erosion
Prevention of infection: Ideal antimicrobial surfaces

- Broad spectrum or very specific biocidal activity
- High differential toxicity between mammalian cells and bacteria
- Biocompatible
- Infinite life time
Different technologies

- Polymers with repellent properties
 - No product

- Bulk modified polymers
 - Release of antimicrobial agents and contact efficacy
 - Antibiotics
 - Antiseptics

- Surface modified polymers
Actual products and technologies (1) non silver agents

<table>
<thead>
<tr>
<th>Products</th>
<th>Antimicrobial</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC™ Thromboshield</td>
<td>Benzalkonium Chloride + heparin</td>
<td>PUR CVC</td>
</tr>
<tr>
<td>Hydrocath Assure</td>
<td>Benzalkonium Chloride + hydrophilic matrix</td>
<td>PUR CVC</td>
</tr>
<tr>
<td>Cook Spectrum</td>
<td>Minocycline/rifampicin</td>
<td>PUR CVC</td>
</tr>
<tr>
<td>Spectramed hydrocath</td>
<td>PVP with an isocyanate prepolymer</td>
<td>PUR CVC</td>
</tr>
</tbody>
</table>
Rationale for selecting silver (2)

- Old antiseptic ➔ new technologies
- Different active forms: ions, salts ...
- Broad spectrum:
 - Bacteria Gram + and Gram –
 - Yeasts
 - Active on biofilms
- Very low toxicity
- No actual case of resistance described
Surface treatments by silver ions (3)

<table>
<thead>
<tr>
<th>Product</th>
<th>Antimicrobial</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arglaes</td>
<td>Silver in alginate polymer</td>
<td>Wound dressing (burns) + urology devices</td>
</tr>
<tr>
<td>SPI-Ag</td>
<td>Silver ion (PVD + IBAD)</td>
<td>Medical devices</td>
</tr>
<tr>
<td>Acticoat</td>
<td>Silver (PVD)</td>
<td>Burn dressing</td>
</tr>
<tr>
<td>Infectguard</td>
<td>Silver ion implantation</td>
<td>PUR CVC</td>
</tr>
</tbody>
</table>
Surface treatments by silver in hydrogel (4)

<table>
<thead>
<tr>
<th>Product</th>
<th>Antimicrobial</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bard-X I.C.</td>
<td>Silver/hydrogel</td>
<td>Foley catheter</td>
</tr>
<tr>
<td>LubriLAST-K</td>
<td>$\text{Ag}_2\text{O}_3\text{AgCl}/\text{hydrogel}$</td>
<td>Medical devices</td>
</tr>
</tbody>
</table>
Other surface technologies using silver (5)

<table>
<thead>
<tr>
<th>Product</th>
<th>Antimicrobial</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIP-COAT</td>
<td>AgX, Antibiotics in hydrophilic polymers</td>
<td>Coating for medical devices</td>
</tr>
<tr>
<td>SURFACINE</td>
<td>Photolink technology and UV radiation + silver</td>
<td>Medical devices</td>
</tr>
<tr>
<td>ARROW GARD I and II</td>
<td>Chlorhexidine and silver sulfadiazine</td>
<td>PUR CVC</td>
</tr>
</tbody>
</table>
SLIP-COAT®: STS biopolymer

Hybrid polymer system (polyvinylpyrrolidone and cellulose esters formulated in organic solvent solutions)

Not coated

Coated with the polymer system
Surfacin® inert antimicrobial surface

- Kill microorganisms upon **contact** with the surface
- **Does not elute or leach** into solution ➔ Insignificant elutables (80° C, 5 days ~ 1 year ambient temperature)
- Long-term and broad spectrum of antimicrobial efficacy
- Treatment of **external surfaces** only
- **Non toxic** for cells: biologically inert
- **Durability**: blood, urine, autoclaving, EtO, E-beam, Gamma radiation
- **Compatibility**: almost all materials
Incorporation of silver into the material (6)

<table>
<thead>
<tr>
<th>Product</th>
<th>Antimicrobial</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLIGON (IMPLEMED)</td>
<td>Silver-platinum iontophoresis</td>
<td>Polyurethane CVC catheter</td>
</tr>
<tr>
<td>Erlanger silver catheter</td>
<td>Silver particules</td>
<td>PUR CVC</td>
</tr>
<tr>
<td>AgION</td>
<td>Silver zeolites</td>
<td>Medical devices</td>
</tr>
</tbody>
</table>
OLIGON Technology – IMPLEMENTED

- Composite polymers containing silver and platinium particles that generate silver ions via iontophoresis to provide antimicrobial action

- Microscopic electrical fields within that drive Ag+ into the surrounding environment (Ag, Pt act as electrodes)

- **Substrate compatibility**: plastics, rubbers, fibers through the entire material

- Bacteria killing on the device surface and surrounding environment

- *In vitro* and *in vivo* tests indicate a ten-fold reduction of bacterial colonization for 2 months (to years)

- **Inside and outside surfaces** (catheter, tubings) can be treated
AgION technology

• Completely inorganic antimicrobial treatment
• Medium = bio-inert ceramic = zeolite
• Active ingredient = silver ionically bounded to the zeolite
• Long term antimicrobial protection
• Broad range of microbes, no antibiotic resistance
• Surface coating or compounded into the material
Conclusion

- At least, 7-10 new antimicrobial products and technologies are under development.
- At least 10 companies, worldwide are active in antimicrobial coatings area.
- BUT
 - Cost
 - Development of bacterial resistances to antibiotics/antiseptics
 - Biological secondary risks (hypersensitivities to antiseptic agents)

Strategies for infection prevention
- Large scale prevention for everybody
- Specific prevention only for particular risk patients

Selection of the appropriate product